On the Exploration of Joint Attribute Learning for Person Re-identification
نویسندگان
چکیده
This paper presents an algorithm for jointly learning a set of mid-level attributes from an image ensemble by locating clusters of dependent attributes. Human describable attributes are an active research topic due to their ability to transfer between domains, human understanding, and improvement to identification performance. Joint learning may allow for enhanced attribute classification when there is inherent dependency among the attributes. We propose an agglomerative clustering scheme to determine which sets of attributes should be learned jointly in order to maximize the margin of performance improvement. We evaluate the joint learning algorithm on a set of attributes for the task of person re-identification. We find that the proposed algorithm can improve classifier accuracy over both independent or fully joint attribute classification. Furthermore, the enhanced classifiers also improve performance on the person re-identification task. Our algorithm can be widely applicable to a variety of attribute-based visual recognition problems.
منابع مشابه
Transferable Joint Attribute-Identity Deep Learning for Unsupervised Person Re-Identification
Most existing person re-identification (re-id) methods require supervised model learning from a separate large set of pairwise labelled training data for every single camera pair. This significantly limits their scalability and usability in real-world large scale deployments with the need for performing re-id across many camera views. To address this scalability problem, we develop a novel deep...
متن کاملLearning a Semantically Discriminative Joint Space for Attribute Based Person Re-identification
While attributes have been widely used for person re-identification (Re-ID) that matches the same person images across disjoint camera views, they are used either as extra features or for performing multi-task learning to assist the image-image person matching task. However, how to find a set of person images according to a given attribute description, which is very practical in many surveillan...
متن کاملJoint Semantic and Latent Attribute Modelling for Cross-Class Transfer Learning.
A number of vision problems such as zero-shot learning and person re-identification can be considered as cross-class transfer learning problems. As mid-level semantic properties shared cross different object classes, attributes have been studied extensively for knowledge-transfer across classes. Most previous attribute learning methods focus only on human-defined/nameable semantic attributes, w...
متن کاملJoint Learning for Attribute-Consistent Person Re-Identification
Person re-identification has recently attracted a lot of attention in the computer vision community. This is in part due to the challenging nature of matching people across cameras with different viewpoints and lighting conditions, as well as across human pose variations. The literature has since devised several approaches to tackle these challenges, but the vast majority of the work has been c...
متن کاملImproving Person Re-identification by Attribute and Identity Learning
Person re-identification (re-ID) and attribute recognition share a common target at the pedestrian description. Their difference consists in the granularity. Attribute recognition focuses on local aspects of a person while person re-ID usually extracts global representations. Considering their similarity and difference, this paper proposes a very simple convolutional neural network (CNN) that l...
متن کامل